Performance analysis of electronic power transformer based on neuro-fuzzy controller
نویسندگان
چکیده
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
منابع مشابه
Modeling and Neuro-fuzzy Controller Design of a Wind Turbine in Full-load Region Based on Operational Data
In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The operational data show that the turbine under study, with a classical PI controller, encounters high fluctuations when controlling the output power at its rated value. The turbine modeling is performed by deriving th...
متن کاملA NEURO-FUZZY TECHNIQUE FOR DISCRIMINATION BETWEEN INTERNAL FAULTS AND MAGNETIZING INRUSH CURRENTS IN TRANSFORMERS
This paper presents the application of the fuzzy-neuro method toinvestigate transformer inrush current. Recently, the frequency environment ofpower systems has been made more complicated and the magnitude of the secondharmonic in inrush current has been decreased because of the improvement of caststeel. Therefore, traditional approaches will likely mal-operate in the case ofmagnetizing inrush w...
متن کاملRobust Power Control of Microgrid based on Hybrid Renewable Power Generation Systems
This paper presents modeling and control of a hybrid distributed energy sources including photovoltaic (PV), fuel cell (FC) and battery energy storage (BES) in a microgrid which provides both real and reactive power to support an unbalanced utility grid. The overall configuration of the microgrid including dynamic models for the PV, FC, BES and its power electronic interfacing are briefly descr...
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کاملFast Transient Hybrid Neuro Fuzzy Controller for STATCOM During Unbalanced Voltage Sags
A static synchronous compensator (STATCOM) is generally used to regulate voltage and improve transient stability in transmission and distribution networks. This is achieved by controlling reactive power exchange between STATCOM and the grid. Unbalanced sags are the most common type of voltage sags in distribution networks. A static synchronous compensator (STATCOM) is generally used to maintain...
متن کامل